Simulation of an Ultrasonic Immersion Test for the Characterization of Anisotropic Materials

نویسندگان

  • Anna Castellano
  • Pilade Foti
  • Aguinaldo Fraddosio
  • Salvatore Marzano
  • Mario Daniele Piccioni
  • Domenico Scardigno
چکیده

Introduction: Improving the capability of nondestructive evaluations requires the analysis of suitable models dealing with the physical and mechanical phenomena involved in the experiments. For example, ultrasonic tests may be a powerful, fast and effective method for nondestructive characterization of mechanical properties of materials. This requires the study of the related elastodynamic problems, which may present various difficulties especially in presence of complex behaviors (anisotropy, finite deformations, damage, etc.). In this context, numerical simulations may be very helpful for design experimental set-ups and for understanding the results of the tests. In particular, here we use a numerical model for simulate an immersion ultrasonic test aimed at characterizing anisotropic materials; to do this, the evaluation of ultrasonic speed of longitudinal and transversal waves in various direction is needed. The analysis is specialized to the case of fiberreinforced composite materials with a single layer of carbon fibers (CFRP). This material may be modeled as transversely isotropic, with an axis of transverse isotropy coincident with the axis of the fibers (Figure 1). The accuracy of the numerical model has been investigated by a comparison with experimental data. Use of COMSOL Multiphysics: We used the General Form PDE interface which may solve many classical PDE, including some wave equations. The motivations of this choice are mainly two: 1) one can model the fluid (water) and the solid (fiber-reinforced composite) domains; 2) one can easily change the predefined form of the PDE for adapting it to his elastodynamic mechanical model. We used the time dependent solver for the analysis in the time domain: this approach is suitable for problems like elastic waves propagation. The parameters of the model come from ultrasonic immersion tests on samples of CFRP. Results: The analysis is focused on the determination of the speed of ultrasonic longitudinal and transversal waves through the evaluation of their time of flight. Furthermore, the numerical model allows for: 1) the identification of the areas of maximum intensity of the ultrasound beam and the measurement of the phase velocity and the phase angles (Figure 2 and Figure 3), this aims to define optimal positions of the transducers in the experiments; 2) the analysis of the effects of rotations of the specimen and/or of the transducers on the ultrasonic propagation, for improving the management of the tests; 3) the determination of planes of symmetry of the mechanical response; 4) the determination of the angles of incidence of the ultrasound beam for generating longitudinal and transverse waves with maximum energy inside the sample. Conclusion: The proposed numerical model is innovative in the field of ultrasonic NDT since it is 3D model and considers the coexistence of two phases (the fluid and the solid). The numerical results are comparable with those obtained experimentally: this validate the capability of the model for prediction and interpretation of experimental data. From this starting point may stem a number of future applications like, for example, the analysis of ultrasound propagation in anisotropic materials with defects, damages, and initial stress (residual and/or applied).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental, Franc2d, and DDM simulation to determine the anisotropic tensile strength of brittle material

In this paper, a compression-to-tensile load converter device is developed to determine the anisotropic tensile strength of brittle material. A cubic sample with an internal pore was used as the test specimen, and a series of finite element analysis and DDM simulations were performed thereafter to analyse the effect of pore dimensions on the stress concentration, as well as to render a suitable...

متن کامل

Finite element simulation of pyroplastic deformation, anisotropic shrinkage and heterogeneous densification for ceramic materials during liquid phase sintering process

Pyroplastic deformation is a distortion of the ceramic shape during the sintering process. It occurs because the flow of the vitreous phase at high temperature and the applied stress due to the weight of the product during sintering process. The aim of this paper deals with describing a numerical-experimental method to evaluate the pyroplastic deformation, to predict the anisotropic shrinkage a...

متن کامل

Elastic characterization of porous bone by ultrasonic method through Lamb waves

The object of this research is to characterize the porous bones by an ultrasonic method using Lamb waves. In recent years, the characterization of such materials has attracted many authors and takes a perfect place in the field of medicine. It requires the development of more efficient technology for getting the necessary quality and security. This paper aims to exploits the dispersion curves o...

متن کامل

Numerical and analytical investigation of an ultrasonic assisted ECAP process

One of the great challenges in the processing of materials using Equal Channel Angular Pressing (ECAP) is the high forming forces required to produce large shear deformation in the material. Researchers show that the friction forces between the die and the sample constitute a great part of the total forming forces. Recently, ultrasonic vibrations are successfully implemented into the ECAP proce...

متن کامل

Anisotropic Materials Characterization Using Air-coupled Ultrasound

Ultrasonic materials characterization is widely used to assess both properties and defects of structural components. Recently, the option of gasor air-coupled ultrasonic testing has become a realistic possibility. In this paper we develop the application of resonant sound transmission methods through ambient air in anisotropic materials with the sound wavevector oriented in a general direction ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012